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Abstract. Perfectly rational decision-makers maximize expected util-
ity, but crucially ignore the resource costs incurred when determining
optimal actions. Here we employ an axiomatic framework for bounded
rational decision-making based on a thermodynamic interpretation of
resource costs as information costs. This leads to a variational “free util-
ity” principle akin to thermodynamical free energy that trades off utility
and information costs. We show that bounded optimal control solutions
can be derived from this variational principle, which leads in general to
stochastic policies. Furthermore, we show that risk-sensitive and robust
(minimax) control schemes fall out naturally from this framework if the
environment is considered as a bounded rational and perfectly rational
opponent, respectively. When resource costs are ignored, the maximum
expected utility principle is recovered.
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1 Introduction

According to the principle of maximum expected utility (MEU), a perfectly ra-
tional decision-maker chooses its action so as to maximize its expected utility,
given a probabilistic model of the environment [18]. In contrast, a bounded ratio-
nal decision-maker trades off the action’s expected utility against the computa-
tional cost of finding the optimal action [12]. In this paper we employ a previously
published axiomatic conversion between utility and information [11] as a basis
for a framework for bounded rationality that leads to such a trade-off based on
a thermodynamic interpretation of resource costs [5]. The intuition behind this
interpretation is that ultimately any real decision-maker has to be incarnated
in a thermodynamical system, since any process of information processing must
always be accompanied by a pertinent physical process [16]. In the following
we conceive of information processing as changes in information states repre-
sented by probability distributions in statistical physical systems, where states
with different energy correspond to states with different utility [4]. Changing an
information state therefore implies changes in physical states, such as flipping
gates in a transistor, changing voltage on a microchip, or even changing location
of a gas particle. Changing such states is costly and requires thermodynamical
work [5]. We will interpret this work as a proxy for resource costs of information
processing.
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2 Bounded Rationality

Since bounded rational decision-makers need to trade off utility and information
costs, the first question is how to translate between information and utility.
In canonical systems of statistical mechanics this relationship is given by the
Boltzmann distribution that relates the probability P of a state to its energy U
(utility), thus forming a conjugate pair (P,U). As shown previously, the same
relationship can be derived axiomatically in a choice-theoretic context [11], and
both formulations satisfy a variational principle [4]:

Theorem 1. Let X be a random variable with values in X . Let P and U be a
conjugate pair of probability measure and utility function over X. Define the free
utility functional as J(Pr;U) :=

∑
x∈X Pr(x)U(x) − α

∑
x∈X Pr(x) log Pr(x),

where Pr is an arbitrary probability measure over X. Then, J(Pr;U) ≤ J(P;U)
with P(X) = 1

Z e
1
α U(X) and Z =

∑
X′∈X e

1
α U(X′).

A proof can be found in [8]. The constant α ∈ R is usually strictly positive,
unless one deals with an adversarial agent and it is strictly negative.

The variational principle of the free utility also allows measuring the cost of
transforming the state of a stochastic system required for information processing.
Consider an initial system described by the conjugate pair Pi and Ui and free
utility Ji(Pi,Ui). We now want to transform this initial system into another
system by adding new constraints represented by the utility function U∗. Then,
the resulting utility function Uf is given by the sum Uf = Ui + U∗ and the
resulting system has the free utility Jf (Pf ,Uf ). The difference in free utility is

Jf − Ji =
∑

x∈X
Pf (x)U∗(x)− α

∑

x∈X
Pf (x) log

Pf (x)
Pi(x)

. (1)

These two terms can be interpreted as determinants of bounded rational decision-
making in that they formalize a trade-off between an expected utility U∗ (first
term) and the information cost of transforming Pi into Pf (second term). In this
interpretation Pi represents an initial probability or policy, which includes the
special case of the uniform distribution where the decision-maker has initially
no preferences. Deviations from this initial probability incur an information cost
measured by the KL divergence. If this deviation is bounded by a non-zero value,
we have a bounded rational agent. This allows formulating a variational principle
both for control and estimation:

1. Control. Given an initial policy represented by the probability measure Pi

and the constraint utilities U∗, we are looking for the final system Pf that
optimizes the trade-off between utility and resource costs. That is,

Pf = arg max
Pr

∑

x∈X
Pr(x)U∗(x)− α

∑

x∈X
Pr(x) log

Pr(x)
Pi(x)

. (2)

The solution is given by Pf (x) ∝ Pi(x) exp
(

1
αU∗(x)

)
. In particular, at very

low temperature α ≈ 0 we get Jf − Ji ≈
∑

x∈X Pf (x)U∗(x), and hence
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resource costs are ignored in the choice of Pf , leading to Pf ≈ δx∗(x),
where x∗ = maxx U∗(x). Similarly, at a high temperature, the difference is
Jf − Ji ≈ −α

∑
x∈X Pf (x) log Pf (x)

Pi(x) , and hence only resource costs matter,
leading to Pf ≈ Pi.

2. Estimation. Given a final probability measure Pf that represents the envi-
ronment and the constraint utilities U∗, we are looking for the initial system
Pi that satisfies

Pi = arg max
Pr

∑

x∈X
Pf (x)U∗(x)− α

∑

x∈X
Pf (x) log

Pf (x)
Pr(x)

(3)

which translates into Pi = arg minPr

∑
x∈X Pf (x) log Pf (x)

Pr(x) and thus we have
recovered the minimum relative entropy principle for estimation, having the
solution Pi = Pf . The minimum relative entropy principle for estimation is
well-known in the literature as it underlies Bayesian inference [6], but the
same principle can also be applied to problems of adaptive control [9, 10, 2].

3 Applications

Consider a system that first emits an action symbol x1 with probability P0(x1)
and then expects a subsequent input signal x2 with probability P0(x2|x1). Now
we impose a utility on this decision-maker that is given by U(x1) for the first
symbol and U(x2|x1) for the second symbol. How should this system adjust
its action probability P (x1) and expectation P (x2|x1)? Given the boundedness
constraints, the variational problem can be formulated as a nested expression

max
p(x1,x2)

∑
x1

p(x1)

[
U(x1)− α log

p(x1)

p0(x1)
+

∑
x2

p(x2|x1)

[
U(x2|x1)− β log

p(x2|x1)

p0(x2|x1)

]]
.

with α and β as Lagrange multipliers. We have then an inner variational problem:

max
p(x2|x1)

∑
x2

p(x2|x1)
[
−β log

p(x2|x1)
p0(x2|x1)

+ U(x2|x1)
]

(4)

with the solution

p(x2|x1) =
1
Z2

p0(x2|x1) exp
(

1
β

U(x2|x1)
)

(5)

and the normalization constant Z2(x1) =
∑

x2
p0(x2|x1) exp

(
1
β U(x2|x1)

)
and

an outer variational problem

max
p(x1)

∑
x1

p(x1)
[
−α log

p(x1)
p0(x1)

+ U(x1) + β log Z2

]
(6)

with the solution

p(x1) =
1
Z1

p0(x1) exp
(

1
α

(U(x1) + β log Z2)
)

(7)
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and the normalization constant Z1 =
∑

x1
p0(x1) exp

(
1
α (U(x1) + β log Z2)

)
.

For notational convenience we introduce λ = 1
α and µ = 1

β . Depending on
the values of λ and µ we can discern the following cases:

1. Risk-seeking bounded rational agent: λ > 0 and µ > 0
When λ > 0 the agent is bounded and acts in general stochastically. When
µ > 0 the agent considers the move of the environment as if it was his own
move (hence “risk-seeking” due to the overtly optimistic view). We can see
this from the relationship between Z1 and Z2 in (7), if we assume µ = λ and
introduce the value function Vt = 1

λ log Zt, which results in the recursion

Vt−1 =
1
λ

log
∑
xt−1

P0(xt−1|·) exp (λ (U(xt−1|·) + Vt)) .

Similar recursions based on the log-transform have been previously exploited
for efficient approximations of optimal control solutions both in the discrete
and the continuous domain [3, 7, 15]. In the perfectly rational limit λ → +∞,
this recursion becomes the well-known Bellman recursion

V ∗
t−1 = max

xt−1
(U(xt−1|·) + V ∗

t )

with V ∗
t = limλ→+∞ Vt.

2. Risk-neutral perfectly rational agent: λ → +∞ and µ → 0
This is the limit for the standard optimal controller. We can see this from
(7) by noting that

lim
µ→0

1
µ

log
∑
x2

p0(x2|x1) exp (µU(x2|x1)) =
∑
x2

p0(x2|x1)U(x2|x1),

which is simply the expected utility. By setting U(x1) ≡ 0, and taking the
limit λ → +∞ in (7), we therefore obtain an expected utility maximizer

p(x1) = δ(x1 − x∗1)

with
x∗1 = arg max

x1

∑
x2

p0(x2|x1)U(x2|x1).

As discussed previously, action selection becomes deterministic in the per-
fectly rational limit.

3. Risk-averse perfectly rational agent: λ → +∞ and µ < 0
When µ < 0 the decision-maker assumes a pessimistic view with respect
to the environment, as if the environment was an adversarial or malevolent
agent. This attitude is sometimes called risk-aversion, because such agents
act particularly cautiously to avoid high uncertainty. We can see this from
(7) by writing a Taylor series expansion for small µ

1
µ

log
∑
x2

p0(x2|x1) exp (µU(x2|x1)) ≈ E[U ]− µ

2
VAR[U ],
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where higher than second order cumulants have been neglected. The name
risk-sensitivity then stems from the fact that variability or uncertainty in
the utility of the Taylor series is subtracted from the expected utility. This
utility function is typically assumed in risk-sensitive control schemes in the
literature [19], whereas here it falls out naturally. The perfectly rational actor
with risk-sensitivity µ picks the action

p(x1) = δ(x1 − x∗1)

with
x∗1 = arg max

x1

1
µ

log
∑
x2

p0(x2|x1) exp (µU(x2|x1)) ,

which can be derived from (7) by setting U(x1) ≡ 0 and by taking the limit
λ → +∞. Within the framework proposed in this paper we might also inter-
pret the equations such that the decision-maker considers the environment
as an adversarial opponent with bounded rationality µ.

4. Robust perfectly rational agent: λ → +∞ and µ → −∞
When µ → −∞ the decision-maker makes a worst case assumption about
the adversarial environment, namely that it is also perfectly rational. This
leads to the well-known game-theoretic minimax problem with the solution

x∗1 = arg max
x1

arg min
x2

U(x2|x1),

which can be derived from (7) by setting U(x1) ≡ 0, taking the limits λ →
+∞ and µ → −∞ and by noting that p(x1) = δ(x1−x∗1). Minimax problems
have been used to reformulate robust control problems that allow controllers
to cope with model uncertainties [1]. Robust control problems are also known
to be related to risk-sensitive control [1]. Here we derived both control types
from the same variational principle.

4 Conclusion

In this paper we have proposed a thermodynamic interpretation of bounded ra-
tionality based on a free utility principle. Accordingly, bounded rational agents
trade off utility maximization against resource costs measured by the KL di-
vergence with respect to an initial policy. The use of the KL divergence as a
cost function for control has been previously proposed to measure deviations
from passive dynamics in Markov systems [14, 15]. Other methods of statisti-
cal physics have been previously proposed as an information-theoretic approach
to interactive learning [13] and to game theory with bounded rational players
[20]. The contribution of our study is to devise a single axiomatic framework
that allows for the treatment of control problems, game-theoretic problems and
estimation and learning problems for perfectly rational and bounded rational
agents. In the future it will be interesting to relate the thermodynamic resource
costs of bounded rational agents to more traditional notions of resource costs
in computer science like space and time requirements when computing optimal
actions [17].
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