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◮ Example:
◮ ‘I had a bad fall on wet floor.’
◮ ‘Therefore, it is dangerous to ride a bike on ice.’
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◮ Two important aspects:
◮ Infer causal link from experience.
◮ Extrapolate to future experience.

◮ We all do this in our everyday lives—but how?
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◮ A pair of (binary) random variables X and Y

◮ Two candidate causal hypotheses {h,¬h}
(having identical joint distributions)

◮ How do we express the problem of causal induction using the
language of graphical models alone?

◮ Do we have to introduce a meta-level for H?
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◮ Node: mechanism, history dependent
◮ e.g. P(y |h,¬x) = 1

4 and P(¬y |h,¬x) = 3
4

◮ Path: causal realization of mechanisms

◮ Tree: causal realizations, possibly heterogeneous

◮ All random variables are first class citizens!
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◮ We haven’t learned anything!

◮ To extract new causal information,
we have to supply old causal information:

◮ “no causes in, no causes out”
◮ “to learn what happens if you kick the system,

you have to kick the system”
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◮ Replace all mechanisms resolving X with the delta “X = x”.
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◮ We set X = x , then we observe Y = y .
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◮ We have have acquired evidence for “X → Y ”!



Conclusions

◮ Causal induction can be done using purely Bayesian
techniques plus a description allowing multiple causal
explanations of an experiment.

◮ Probability trees provide a clean & simple way to encode
causal probabilistic information.

◮ The purpose of an intervention is to introduce statistical
asymmetries.

◮ The causal information that we can acquire is limited by the
interventions we can apply to the system.

◮ In this approach, the causal dependencies are not “in the
data”, but they rather arise from the data and the hypotheses
that the reasoner “imprints” on them.


