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We all do this in our everyday lives—but how?
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Do we have to introduce a meta-level for H?



Probability Trees
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Node: mechanism, history dependent

> e.g. P(y|h,—x) = 3 and P(—y|h,—x) =

Path: causal realization of mechanisms

v
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Tree: causal realizations, possibly heterogeneous

All random variables are first class citizens!
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Inferring the Causal Direction

» We observe X = x, then we observe Y = y.
» What is the probability of H = h?

» Calculate posterior probability:

P(ylh, x)P(x|h)P(h)

P(hlx,y) =
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» We haven't learned anything!

» To extract new causal information,
we have to supply old causal information:
» “no causes in, no causes out”
» “to learn what happens if you kick the system,
you have to kick the system”
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Interventions in a Probability Tree

Set X = x:

P(X, Y|H) :

» Replace all mechanisms resolving X with the delta “X = x".
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Inferring the Causal Direction—2nd Attempt
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We set X = x, then we observe Y = y.
What is the probability of H = h?
Calculate posterior probability:

P(ylh,%)P(X[h)P(h)
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P(hl%,y) = P(y|h,%)P(x[h)P(h) + P(%|=h, y)P(y|~h)P(=h)
% .1.1 3
- %.1_%+12 3 = 7 P(h).
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We have have acquired evidence for "X — Y|



Conclusions

» Causal induction can be done using purely Bayesian
techniques plus a description allowing multiple causal
explanations of an experiment.

» Probability trees provide a clean & simple way to encode
causal probabilistic information.

» The purpose of an intervention is to introduce statistical
asymmetries.

» The causal information that we can acquire is limited by the
interventions we can apply to the system.

» In this approach, the causal dependencies are not “in the
data”, but they rather arise from the data and the hypotheses
that the reasoner “imprints” on them.



