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Abstract

We propose a novel Bayesian approach to solve stochastmination problems
that involve finding extrema of noisy, nonlinear functionBrevious work has
focused on representing possible functions explicitlyjolvHeads to a two-step
procedure of first, doing inference over the function spaw second, finding
the extrema of these functions. Here we skip the representstep and directly
model the distribution over extrema. To this end, we devis®a-parametric
conjugate prior based on a kernel regressor. The resultstegpor distribution
directly captures the uncertainty over the maximum of thknemn function.
Givent observations of the function, the posterior can be evatuatéciently
in time O(#?) up to a multiplicative constant. Finally, we show how to gpplr
model to optimize a noisy, non-convex, high-dimensiongotive function.

1 Introduction

Historically, the fields of statistical inference and stastic optimization have often developed their
own specific methods and approaches. Recently, howeveg t@s been a growing interest in
applying inference-based methods to optimization probland vice versa [1-4]. Here we consider
stochastic optimization problems where we observe nasg¢aminated values from an unknown
nonlinear function and we want to find the input that maxirsittee expected value of this function.

The problem statement is as follows. L&tbe a metric space. Consider a stochastic function
f: X ~ R mapping a test point € X to real valueg; € R characterized by the conditional pdf
P(y|z). Consider the mean function

f(@):=Elyla] = [ yP(slo) d. @
The goal consists in modeling the optimal test point
r* = argmax{f(z)}. 2
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Figure 1: a) Given an estimateof the mean functiorf (left), a simple probability density function
over the location of the maximunt* is obtained using the transformatidt{z*) o« exp{ah(z*)},
wherea > 0 plays the role of the precision (right). b) lllustration bétGramian matrix for different
test locations. Locations that are close to each other pmiduge off-diagonal entries.

Classic approaches to solve this problem are often basetbomastic approximation methods [5].
Within the context of statistical inference, Bayesian wmyitiation methods have been developed
where a prior distribution over the space of functions isias=d and uncertainty is tracked during
the entire optimization process [6, 7]. In particular, nmarametric Bayesian approaches such as
Gaussian Processes have been applied for derivativegtieeipation [8, 9], also within the context
of the continuum-armed bandit problem [10]. Typically,sbéayesian approaches aim to explicitly
represent the unknown objective function of (1) by entaitej a posterior distribution over the
space of objective functions. In contrast, we aim to modadally the distribution of the maximum

of (2) conditioned on observations.

2 Brief Description

Our model is intuitively straightforward and easy to imptm. Leth(z) : X — R be an estimate
of the meanf(x) constructed from dat®; := {(x;,v;)}!_, (Figure 1a, left). This estimate can
easily be converted into a posterior pdf over the locatiathefmaximum by first multiplying it with
a precision parameter > 0 and then taking the normalized exponential (Figure latyigh

P(z*|Dy) ox exp{a - h(z")}.

In this transformation, the precision parametezontrols the certainty we have over our estimate of
the maximizing argumenty ~ 0 expresses almost no certainty, while— oo expresses certainty.
The rationale for the precision is: the matistinctinputs we test, the higher the precision—testing
the same (or similar) inputs only providiegal information and therefore should not increase our
knowledge about thglobal maximum. A simple and effective way of implementing thisade
given by

> K, i) ).ZiK(xiax*)yi+K0(x*)y0(x*)} 3)
> K(wi,zj) > K@i, x*) + Ko(a*) ’

effective # of locations estimate off (z*)

P(*|Dy) exp{p~ <5+t-

wherep, ¢, K, Ky andy, are parameters of the estimatpr> 0 is the precision we gain for each
new distinct observatiorg > 0 is the number of prior pointsk’ : X x X — R™ is a symmetric
kernel function;K, : X — R™ is a prior precision function; ang : X — R is a prior estimate of
I

In (3), the mean functiorf is estimated with a kernel regressor [11] that combines dinetfon
observations with a prior estimate of the function, and ttalteffective number of locations is
calculated as the sum of the prior locatighand the number of distinct locations in the d&a
The latter is estimated by multiplying the number of datanpsyi with the coefficient

> K(zi, @)
>0 Kz, z))

Implementations can be downloaded from http://www.ad@ptients.org/argmaxprior

€ (0,1], (4)
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Figure 2: lllustration of the posterior distribution ovéretmaximizing argument for 10, 100 and
1000 observations drawn from a function with varying noiBiee top-left panel illustrates the func-
tion and the variance bounds (one standard deviation). Beergations in the center region close
to x = 1.5 are very noisy. It can be seen that the prior gets progrdgsieeshed out with more
observations.

i.e. the ratio between the trace of the Gramian matfiXz;, x;)); ; and the sum of its entries.
Inputs that are very close to each other will have overlagpgernels, resulting in large off-diagonal
entries of the Gramian matrix—hence decreasing the nunfliistinct locations (Figure 1b). For
example, if we have observations from < ¢ locations, and each location hgs: observations,
then the coefficient (4) is equal to/t and hence the number of distinct locations is exaatlas
expected.

Figure 2 illustrates the behavior of the posterior distiifiu The expression for the posterior can
be calculated up to a constant factor(tit) time. The computation of the normalizing constant
is in general intractable. Therefore, our proposed pastean be easily combined with Markov
chain Monte Carlo methods (MCMC) to implement stochastitinoigers as will be illustrated in
Section 4.

3 Derivation

3.1 Function-Based, Indirect M odel

Our first task is to derive aindirectBayesian model for the optimal test point that builds itineate

via the underlying function space. L&tbe the set of hypotheses, and assume that each hypothesis
g € G corresponds to a stochastic mapping X’ ~ R. Let P(g) be the priof overgG and let the
likelihood beP({y:}|g, {x:}) = [1; P(v¢lg, ). Then, the posterior of is given by

_ P(g)P({y:}|g, {z:}) _ P(g) HtP(yt|gaxt)
Pl o) = =5 ey~ Plwdled) ©

For eachz* € X, let G(z*) C G be the subset of functions such that for @le G(z*), 2* =
arg max,.{g(x)}3. Then, the posterior over the optimal test paihtis given by

P (g fr}) = / P(gl{m}. {x1)) dg. (6)

G(z)

This model has two important drawbacks: (a) it relies on nindethe entire function spacé,
which is potentially much more complex than necessary;t(f®quires calculating the integral (6),
which is intractable for virtually all real-world problems

2For the sake of simplicity, we neglect issues of measutglufiG.
3Note that we assume that the mean funcgjas bounded and that it has a unique maximizing test point.



3.2 Domain-Based, Direct M odel

We want to arrive at a Bayesian model that bypasses the attegistep suggested by (6) and directly
models the location of optimal test point. The following theorem explains how thirect model
relates to the previous model.

Theorem 1. The Bayesian model for the optimal test paititis given by
Put)= [ P (prion)

Jguﬁ)f%ydg,wﬂfﬁg)lli;ﬁf%yug,xk)dg
fg(m*) P(g) Hzl;;ll P(yklg, xx) dg

whereD, := {(zx, yx)}i_, is the set of past tests.

P(ys|a™, 24, Dy1) = : (likelihood)

Proof. Using Bayes' rule, the posterior distributid®(«*|{y; }, {«:}) can be rewritten as

P(z*) I, P(ye|z*, x4, Di—1)
P({y:}{x:})

Since this posterior is equal to (6), one concludes (usipgliat

P(x*)HP(th*,fCt,Dt—l) = /g( *)P(g)HP(yt|g,xt)dg.

t

()

Note that this expression corresponds to the joit*, {y; }|{x:}). The priorP(x*) is obtained by
settingt = 0. The likelihood is obtained as the fraction

P(I*v{yk}};:ﬂ{xk}i:ﬂ
Pl {yr s {zn}isy)

where it shall be noted that the denomina®ge:*, {y; }:_" |{z)}:_! ) doesn’t change if we add the
conditionz;. O

P(yt|x*aIt,Dt71) =

From Theorem 1 it is seen that although the likelihood mdeg},|g, z;) for the indirect model
is i.i.d. at each test point, the likelihood mode(y;|z*, z;, D;—1) for the direct model depends
on the past test®,_,, that is,it is adaptive More critically though, the likelihood function’s
internal structure of the direct model corresponds to aegiration over function space as well—
thus inheriting all the difficulties of the indirect model.

3.3 Abstract Propertiesof the Likelihood Function

There is a way to bypass modeling the function space eXpliitve make a few additional as-
sumptions. We assume that for apy¥ G(z*), the mean functiog is continuous and has a unique
maximum. Then, the crucial insight consists in realizirgf the value of the mean functigrinside

a sufficiently small neighborhood ef is larger than the value outside of it (see Figure 3a).

We assume that, for any> 0 and anyz € X, let Bs(z) denote the opediball centered on. The
functions ingG fulfill the following properties:

a. Continuous:Every functiong € G is such that its meagis continuous and bounded.

b. Maximum: For anyz* € X, the functiongy € G(«*) are such that for ab > 0 and all
z & Bs(x), g(z*) > g(2).

Furthermore, we impose a symmetry condition on the likathtunction. Letz} andzj be in X,
and consider their associated equivalence clag&es) andG(z5). There is no reason for them to
be very different: in fact, they should virtually be indigguishable outside of the neighborhoods
of z7 andz3. Itis only inside of the neighborhood ef whengG(z}) becomes distinguishable from
the other equivalence classes because the functiofi&ih) systematically predict higher values
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Figure 3: lllustration of assumptions. a) Three functiasfG(z*). They all have their maximum
located atr* € X. b) Schematic representation of the likelihood function:bfe X conditioned
on a few observations. The curve corresponds to the mearhamnshaided area to the confidence
bounds. The density inside of the neighborhood is uniquéedcypothesis:*, while the density
outside is shared amongst all the hypotheses. c) The legiHdod ratio of the hypothese§ and

x4 as a function of the test point The kernel used in the plot is Gaussian.

than the rest. This assumption is illustrated in Figure Bbatt, taking the log-likelihood ratio of
two competing hypotheses

P(yt|x>{a Tt, thl)

P(yslas, ¢, Di—1)

for a given test location, should give a value equal to zero unlegss inside of the vicinity ofz}

or x5 (see Figure 3c). In other words, the amount of evidence athgst gets when the test point
is outside of its neighborhood is essentially zero (i.es thie same as the amount of evidence that
most of the other hypotheses get).

log

3.4 Likelihood and Conjugate Prior

Following our previous discussion, we propose the follaylikelihood model. Given the previous
dataD,_; and a test point; € X, the likelihood of the observatiap is

1
Z(x¢, Dy—1)
where: Z(z:,D:—1) is a normalizing constant)\(y:|x+, D;—1) iS a posterior probability ovey;

givenz, and the datdD,_;; o, is a precision measuring the knowledge we have about theewhol
function; and and, is an estimate of the mean functign\We have chosen the precisiaopas

ap=p- (5 + Z%:ifg &ili]))

wherep > 0 is a scaling parametet; > 0 is a parameter representing the number prior locations
tested; and( : X x X — R+ is a symmetric kernel functidnFor the estimaté,, we have chosen
a Naradaya-Watson kernel regressor [11]

_ X K@i 27y + Ko(@ o ()
S K(xi, z%) + Ko(z*)

In the last expression, corresponds to a prior estimate owith prior precisionk. Inspecting (8),
we see that the likelihood model favours positive changéise¢@stimated mean functidrom new,
unseertest locations. The pdf(y|z., D;—1) does not need to be explicitly defined, as it will later
drop out when computing the posterior. The only formal regmient is that it should be independent
of the hypothesis*.

P(yi|z*, 24, Dy 1) = Myielze, De—1) exp{oy - hy(z*) — ap—1 - he—1(z*)},  (8)

he(x™) :

We propose the conjugate prior

Pa*) = Zi explao - go(z*)} = Zi expl€ - yo(a)}. o)

“We refer the reader to the kernel regression literaturedaralysis of the choice of kernel functions.



The conjugate prior just encodes a prior estimate of the mgastion. In a practical optimization
application, it serves the purpose of guiding the exploratif the domain, as location$ with high
prior valuey, (z*) are more likely to contain the maximizing argument.

Given a set of data poinf8,, the prior (9) and the likelihood (8) lead to a posterior givsy

t
* Dy
P($*|Dt) ( )Hk 1 (yk|x y Ly Lk 1)
[y P@") [Ty Plysl2’, 2k, Dy 1) da!

eXp{Zk:l ag - hi(z*) = ap—1 - heo1(2) } 2o TTey Z(@k, Dimr) ™!
Jx exp{Z}i:l o - hi(2') — g1 - by () } 25! Hk 1 Z(wg, D)~ da’

B exp{at he( *)}
jX exp{at he(x } dx’’
Thus, the particular choice of the likelihood function garsiees an analytically compact posterior
expression. In general, the normalizing constant in (1)tfactable, which is why the expression is

only practical for relative comparisons of test locatioBabstituting the precision; and the mean
function estimaté:, yields

(10)

P(x*mt)o(exp{p. <£+t. > K(wi, i) ).Z i K (i, *)yz+Ko( Z) )(w*)}'

Zi Zj K(xivxj) Z K(x;,2*) + Ko

4 Experimental Results

4.1 Parameters.

We have investigated the influence of the parameters on sodtirey posterior probability distribu-
tion. We have used the Gaussian kernel

K(x,z") :exp{—%(z—x*y}. (11)

In this figure, 7 data points are shown, which were drawp as N(f(x),0.3), where the mean
function is

f(z) = cos(2z + 37) + sin(6z + ). (12)
The prior precisionk, and the prior estimate of the mean functignwere chosen as

1

Kofw) =1 and  yola) =~ 5

(I - M0)27 (13)

where the latter corresponds to the logarithm of a Gaussi#im meany, = 1.5 and vari-
ances? = 5. This prior favours the region close to

Figure 4 shows how the choice of the precision sgagéad the kernel widtlr affect the shape of
the posterior probability density. Here, it is seen thatrgdakernel widtho increases the region of
influence of a particular data point, and hence produce dmeo@osterior densities. The precision
scale parameter controls the precision per distinct data point: higher galtorp lead to sharper
updates of the posterior distribution.

4.2 Application to Optimization.

The main motivation behind our proposed model is its appiicato the optimization of noisy
functions. Because of the noise, choosing new test locatxuires carefully balancing explorative
and exploitative tests—a problem well known in timelltiarmed banditditerature. To overcome
this, one can apply the Bayesian control rule/Thompson BagfiL2, 13]: the next test location
is chosen bysamplingit from the posterior. We have carried out two experimengsctibed in the
following.
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Figure 4: Effect of the change of parameters on the postdeapsity over the location of the max-
imizing test point. Panel (a) shows the 7 data points draemfthe noisy function (solid curve).

Panel (b) shows the effect of increasing the width of the é&k¢here, Gaussian). The solid and
dotted curves correspond to= 0.01 ando = 0.1 respectively. Panel (c) shows the effect of di-
minishing the precision on the posterior, where solid aratiskd curves correspond po= 0.2 and

p = 0.1 respectively.
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Figure 5: Observation values obtained by sampling from dstgyior over the maximizing argument
(left panel) and according to GP-UCB (right panel). Thedblue curve corresponds to the time-
averaged function value, averaged over ten runs. The gesy @rresponds to the error bounds
(1 standard deviation), and the dashed curve in red showiaribeaverage of a single run.

Comparison to Gaussian Process UCB. We have used the model to optimize the same func-
tion (12) as in our preliminary tests but with higher additioise equal to one. This is done by sam-
pling the next test point; directly from the posterior density over the optimum locatP (z*|D;),

and then using the resulting péir;, y; ) to recursively update the model. Essentially, this procedu
corresponds to Bayesian control rule/Thompson sampling.

We compared our method against a Gaussian Process optomizmaéthod using an upper con-
fidence bound (UCB) criterion [10]. The parameters for the BFB were set to the following
values: observation noise, = 0.3 and length scalé = 0.3. For the constant that trades off ex-
ploration and exploitation we followed Theoremin [10] which states3; = 2log(|D|t*7?/6J)
with 6 = 0.5. We have implemented our proposed method with a Gaussiarelkas in (11) with
width o2 = 0.05. The prior sufficient statistics are exactly as in (13). Thecfsion parameter was
settop = 0.3.

Simulation results over ten independent runs are sumnthiizd-igure 5. We show the time-
averaged observation valugof the noisy function evaluated at test locations samplethfthe
posterior. Qualitatively, both methods show very similanwergence (on average), however our
method converges faster and with a slightly higher variance

High-Dimensional Problem. To test our proposed method on a challenging problem, we have
designed a non-convex, high-dimensional noisy functioti wiultiple local optima. ThisNoisy
Ripplesfunction is defined as

f(@) = —ga05 |z — ull* + cos(37|z — ul)

whereu € X is the location of the global maximum, and where observatimve additive Gaussian
noise with zero mean and variang¢é. The advantage of this function is that it generalizes veell t
any number of dimensions of the domain. Figure 6a illussrétte function for the 2-dimensional
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Figure 6: a) ThéNoisy Ripple®bjective function in 2 dimensions. b) The time-averagdderand
the regret obtained by the optimization algorithm on a S@atisional version of theoisy Ripples
function.

input domain. This function is difficult to optimize becalisequires averaging the noisy observa-
tions and smoothing the ridged landscape in order to ddteairtiderlying quadratic form.

We optimized the 50-dimensional version of this functiomgs Metropolis-Hastings scheme to
sample the next test locations from the posterior over themiaing argument. The Markov chain
was started af20, 20, - - - , 20]7, executing 120 isotropic Gaussian steps of variah6& before
the point was used as an actual test location. For the argpmax we used a Gaussian kernel
with lengthscald = 2, precision factop = 1.5, prior precisionK,(z*) = 1 and prior mean
estimateyy(2*) = — 25|« + 5/|2. The goal was located at the origin.

The result of one run is presented in Figure 6b. It can be dexdrttte optimizer manages to quickly
(=~ 100 samples) reach near-optimal performance, overcomingiffieutties associated with the
high-dimensionality of the input space and the numeroual logtima. Crucial for this success was
the choice of a kernel that is wide enough to accurately @sérihe mean function. The authors are
not aware of any method capable of solving a problem of sirghi@racteristics.

5 Conclusions

Our goal was to design a probabilistic model over the maximgiargument that is algorithmically

efficient and statistically robust even for large, high-dimional noisy functions. To this end, we
have derived a Bayesian model that directly captures thertainty over the maximizing argument,
thereby bypassing having to model the underlying functfmace—a much harder problem.

Our proposed model is computationally very efficient whempared to Gaussian process-based
(which have cubic time complexity) or models based on uppefidence bounds (which require
finding the input maximizing the bound—a generally intrétgeoperation). In our model, evaluat-
ing the posterior up to a constant factor scales quadritiwéth the size of the data.

In practice, we have found that one of the main difficultiesoagated with our proposed method is
the choice of the parameters. As in any kernel-based estimatethod, choosing the appropriate
kernel bandwidth can significantly change the estimate &adtdhe performance of optimizers that
rely on the model. There is no clear rule on how to choose a aadwidth.

In a future research, it will be interesting to investigdte theoretical properties of the proposed
nonparametric model, such as the convergence speed otitnats and its relation to the extensive
literature on active learning and bandits.
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