
Monte Carlo Methods for Exact & Efficient Solution

of the Generalized Optimality Equations

Pedro A. Ortega1, Daniel A. Braun2 and Naftali Tishby3

Abstract— Previous work has shown that classical sequential
decision making rules, including expectimax and minimax,
are limit cases of a more general class of bounded rational
planning problems that trade off the value and the complexity
of the solution, as measured by its information divergence
from a given reference. This allows modeling a range of
novel planning problems having varying degrees of control
due to resource constraints, risk-sensitivity, trust and model
uncertainty. However, so far it has been unclear in what sense
information constraints relate to the complexity of planning.
In this paper, we introduce Monte Carlo methods to solve the
generalized optimality equations in an efficient & exact way
when the inverse temperatures in a generalized decision tree
are of the same sign. These methods highlight a fundamental
relation between inverse temperatures and the number of
Monte Carlo proposals. In particular, it is seen that the number
of proposals is essentially independent of the size of the decision
tree.

I. INTRODUCTION

Decision trees, also known as game trees, are an essential

tool in decision theory, operations research, artificial intel-

ligence and robotics for representing probabilistic planning

problems [1], [2]. In particular, decision trees are at the heart

of adaptive control, reinforcement learning, path planning,

experimental design, active learning and games. In robotics,

decision trees have been applied, for example, to solve

problems of navigation, sensory classification, knowledge

sharing and linguistic planning [3], [4], [5], [6]. Interest-

ingly, the decision rule depends on the kind of system

the agent is interacting with. So, for instance, if the agent

is controlling a stochastic, neutral system, then it has to

apply the Expectimax rule [7]; if it is competing against

an adversarial system, then it has to apply the Minimax

rule; and if it is controlling a hybrid system containing

both adversarial and stochastic responses, it has to use the

Expectiminimax rule (Figure I). Once the correct decision

tree is formulated, the optimal control command is calculated

*This study was funded by the Emmy Noether Grant BR 4164/1-1, the
Israeli Science Foundation center of excellence, the DARPA MSEE project
and the Intel Collaborative Research Institute for Computational Intelligence
(ICRI-CI) and by a grant from the U.S. Department of Transportation
Research Innovative Technology Administration.

1Pedro A. Ortega is a Postdoctoral Research Fellow at the
GRASP Robotics Lab, University of Pennsylvania, Philadelphia, USA
ope@seas.upenn.edu

2Daniel A. Braun is group leader at the Max Planck Institute
for Intelligent System and Biological Cybernetics, Tübingen, Germany.
daniel.braun@tuebingen.mpg.de

3Naftali Tishby is the director of the Interdisciplinary Center for Neu-
ral Computation (ICNC) and a professor at the School of Engineering
and Computer Science at the Hebrew University of Jerusalem, Israel.
tishby@cd.huji.ac.il

using dynamic programming [8]: starting from the leaves,

values are recursively aggregated using either the maximum,

expectation or minimum operators.

In [9], the aforementioned decision trees have been shown

to be limit cases of a more general class based on the

free energy framework for bounded rational planning [10].

This generalization is based on the observation that the

free energy between two information states can instantiate a

family of aggretation operators that includes the maximum,

the expectation and the minimum operators as special cases,

alongside bounded-rational operators that encapsulate infor-

mation limitations in the control process due to resource con-

straints, risk-sensitivity, trust and model uncertainty. These

generalized decision trees extend the work pioneered by

Kappen [11], [12], Todorov [13], [14], Ortega & Braun [15]

and Tishby & Polani [16] by allowing decision trees to mix

different operators.

The contribution of this paper is to show how to exactly

solve generalized decision trees using Monte Carlo methods

without visiting all the leaves of the tree. This result is based

on the fact that one can obtain optimal actions without having

to explicitly calculate the optimal distribution by identifying

the sampling processes implicitly defined in the optimality

equations. This is of fundamental importance because it

opens up the possibility of obtaining exact and efficient

solutions to a whole new range of control problems that have

never been tackled before.

This paper is structured as follows. In Section II we

provide the preliminaries to understand general decision

trees. Section III is the core contribution of this paper, namely

a rejection sampling and a Metropolis-Hastings method for

solving generalized decision trees. Simulations and experi-

mental results are presented in Section IV. The final section

discusses the methods and ends with concluding remarks.

II. PRELIMINARIES TO BOUNDED RATIONAL PLANNING

A. One-Step Decisions

In [15], [17], [10] it was shown that a bounded rational

planning problem can be formalized based on the free energy

between two information states. Formally, the planning prob-

lem is modeled as a tuple (X , α,Q, U), where: X is the set

of possible outcomes or realizations; α ∈ R is a parameter

called the inverse temperature; Q is a prior probability

distribution over X representing a prior policy (also known

as uncontrolled dynamics); and U : X → R is a real-valued

mapping of outcomes called the utility function. The solution

of the problem is given by a posterior probability P over the

Expectimax Minimax Expectiminimax

max

E

max

E

max

min

max

min

E

max

E

min

Fig. 1. Illustration of Expectimax, Minimax and Expectiminimax in decision trees representing three different interaction scenarios. The internal nodes can
be of three possible types: maximum (△), minimum (▽) and expectation (◦). The optimal decision is calculated recursively using dynamic programming.

outcomes X that optimizes the free energy functional

Fα[P̃] :=
∑

x

P̃ (x)U(x)

︸ ︷︷ ︸

Expected Utility

−
1

α

∑

x

P̃ (x) log
P̃ (x)

Q(x)
︸ ︷︷ ︸

Information Costs

. (1)

The inverse temperature α ∈ R parameterizes the agent’s

amount of control or degree of influence over the outcome

x ∈ X : α > 0 means that this influence is favorable; α = 0
means no influence at all; and α < 0 means that the influence

is adverse. The optimal solution P̃ = P , known as the

equilibrium distribution, is given by

P (x) =
1

Z
Q(x)eαU(x), where Z =

∑

x

Q(x)eαU(x).

(2)

The normalizing constant Z is known as the partition func-

tion. The inspection of (1) reveals that the free energy en-

capsulates a fundamental decision-theoretic trade-off: it cor-

responds to the expected utility, regularized by the additional

information cost of representing the final distribution P using

the base distribution Q. The inverse temperature plays the

role of the conversion factor between units of information

and units of utility. This planning scheme is of particular

appeal from a Bayesian point of view, as the posterior policy

can be thought of as arising from a belief update that treats

utilities as evidence towards the alternatives with a precision

given by the inverse temperature.

Inserting (2) into (1) yields the certainty-equivalent of the

planning problem

Fα[P] =
1

α
logZα =

1

α
log

(
∑

x

Q(x)eαU(x)

)

, (3)

which represents how much the stochastic outcome is worth

to the agent. Obviously, the more the agent is in control,

the more valuable the outcome. This is seen as follows:

for different choices of α, the value and the equilibrium

distribution take the following limits,

α → +∞ 1
α
logZα = max

x
U(x) P (x) = Umax(x)

α → 0 1
α
logZα =

∑

x

Q(x)U(x) P (x) = Q(x)

α → −∞ 1
α
logZα = min

x
U(x) P (x) = Umin(x),

where Umax and Umin are the uniform distribution over the

maximizing and minimizing subsets

Xmax := {x ∈ X : U(x) = max
x′

U(x′)}

Xmin := {x ∈ X : U(x) = min
x′

U(x′)}

respectively. Here, we clearly see that the inverse temperature

α plays the role of a boundedness parameter and that the

single expression 1
α
logZ is a generalization of the classical

concept of value in control.

There are many ways of representing the same control

pattern. Two planning problems are said to be equivalent iff

they have the same prior and posterior policy distributions,

and the same certainty-equivalent. The following theorem

characterizes equivalent planning problems.

Theorem 1. Two planning problems (X , α,Q, U) and

(X , β,Q, V) with partition functions Zα and Zβ respectively

are equivalent iff

αU(x) − logZα = βV (x)− logZβ . (4)

In particular, the following corollary is crucial for the

construction of generalized decision trees.

Corollary 1. For any planning problem, there exists always

a unique equivalent planning problem with a prespecified

inverse temperature.

B. Sequential Decisions

The previously outlined bounded rational framework can

be extended to multiple steps by interpreting outcomes as

trajectories, i.e. x = x1, . . . , xT . These are essentially the

planning problems considered by Kappen and Todorov in

the KL-control framework. We generalize this to planning

problems where the agent can have varying degrees of

control in each state, and represent these as generalized

decision trees.

A generalized decision tree [9] is a tuple

(T,X , β,Q,R, V) where:

• T ∈ N is the horizon, i.e. the depth of the tree;

• X is the alphabet of interactions, defining the set of

states X ∗ :=
⋃T

t=0 X
t (i.e. the nodes of the tree), where

the subset X T ⊂ X ∗ is the set of terminal states;

• β(x≤t) is the inverse temperature in the state x≤t ∈ X ∗;

• Q(xt|x<t) is prior probability of moving from state x<t

to state x≤t = x<txt;

• R(xt|x<t) is the reward obtained when moving from

state x<t to state x≤t;

• V (x≤T) is the value of the terminal state x≤T ,

where we have used the shorthands x<t := x1, . . . , xt−1 and

x≤t := x<txt.

Generalized decision trees only differ from classical de-

cision trees in that the former have node-specific inverse

temperatures instead of having decision and chance nodes.

In order to solve them, we need to extremize the following

functional.

Theorem 2. The free energy of a generalized decision tree

is given by:

Fα[P] =
∑

x≤T

P (x≤T)

{ T∑

t=1

G(xt|x<t)+V (x≤T)

}

+C (5)

where C is a constant independent of P and where

G(xt|x<t) := R(xt|x<t)−
1

β(x<t)
log

P (xt|x<t)

Q(xt|x<t)
(6)

is the information-constrained instantaneous reward.

The proof relies on applying Theorem 1 to the individual

nodes of a decision tree with homogeneous temperatures to

obtain a decision tree with heterogeneous temperatures. Note

that the constant C in (5) can be dropped, because it does

not affect the resulting equilibrium distribution.

Theorem 3. The solution to the free energy is given by

P (xt|x<t) =
1

Z(x<t)
Q(xt|x<t) exp

{

β(x<t)W (x≤t)

}

,

where the partition functions of the terminal and internal

states, respectively, are recursively defined as

Z(x≤T) = exp
{

β(x≤t)V (x≤T)
}

Z(x<t) =
∑

xt

Q(xt|x<t) exp

{

β(x<t)W (x≤t)

}

,

where W (x≤t) is shorthand for

W (x≤t) := R(xt|x<t) +
1

β(x≤t)
logZ(x≤t),

i.e. the instantaneous reward plus the value of the future.

III. SOLVING THE GENERALIZED OPTIMALITY

EQUATIONS

Classical decision trees are typically solved using dy-

namic programming. With a decision tree of depth T and

alphabet X , this would require O(|X |T) operations, which

can quickly become intractable. A brute-force approach for

solving generalized decision trees that computes the values

recursively has the same time complexity. However, we

can do better. In the bounded rational case, solving the

generalized optimality equations amounts to sampling from

the equilibrium distribution P , given a sampler Q. Directly

sampling from P is intractable because it requires computing

the partition function. Therefore, we propose two basic

sampling schemes:

1) Rejection sampling, for the case when we want to

obtain a sample that meets a prespecified target value.

The number of proposals will depend on this target.

2) Metropolis-Hastings, for the case when we want to

specify the number of proposals. The target value will

depend on the amount of proposals.

We first discuss the methods for solving one-step decisions

and then generalize them to sequential decisions that have

either only positive or only negative inverse temperatures.

A. Basic Rejection & Metropolis Sampling

If we set a desired target value, then we can use rejection

sampling to obtain the sample x. This works as follows: draw

first a sample x from Q, then accept with probability

A(x|V ∗) = min
{
1, eα(U(x)−V ∗)

}
, (7)

where V ∗ ∈ R is the target value.

Theorem 4. Rejection sampling with acceptance probabil-

ity (7) produces the correct distribution as long as V ∗ ≥
maxx{U(x)} when α ≥ 0 and V ∗ ≤ minx{U(x)} when

α ≤ 0.

If we do not want to fix a target value but instead we prefer

fixing the number of proposals, then we can run a Markov

chain and use a Metropolis scheme to obtain a sample from

P . This is done as follows. Given a current state x, we

propose the next state x′ by sampling it from Q and then

accept the transition x → x′ with probability

A(x′|x) = min
{

1, eα(U(x′)−U(x))
}

. (8)

Otherwise the stay at x. We repeat this for a fixed number

of iterations and then return the last state as a sample.

Notice that the Metropolis sampler can be seen as a rejection

sampler where the target is given by the utility of the previous

step.

Theorem 5. The stationary distribution of the Markov chain

with acceptance probability (8) is the equilibrium distribu-

tion (2).

Equations (7) and (8) can intuitively thought of as sam-

pling challenges where the difficulty is mainly controlled by

the inverse temperature α—the closer α is to zero, the easier

it is to accept a proposal.

B. Sampling in Generalized Decision Trees

To obtain a sample from the posterior of a generalized

decision tree, we can use the same Monte Carlo schemes

as in the one-step decision case. However, there is an

important caveat. While in the previous case there is a single

inverse temperature governing the difficulty of obtaining a

sample, in generalized decision trees we have one for each

node—the root node being the one that characterizes the

overall planning ability of the agent. Therefore, any sampling

algorithm must take these heterogeneous control restrictions

into account. In what follows, we derive a recursive sam-

pling algorithm that renders the sampling process practical

by equalizing the inverse temperatures but simultaneously

corrects this distortion by altering the number of accepted

proposals it requires in order to accept a sample. This

algorithm only works when the inverse temperatures in the

decision tree have the same sign—although the magnitudes

are allowed to differ.

For this, we start our analysis by considering the marginal

distribution of the first step. Given a target value V ∗, to

obtain a sample from

P (x1) =
1

Z(ε)
Q(x1) exp

{
β(ε)R(x1) +

β(ε)
β(x1)

logZ(x1)
}

we can first sample x′
1 ∼ Q(x1), and then accept it with

probability a, where a is the acceptance probability of the

tail:

a =
exp
{
β(ε)R(x′

1) +
β(ε)
β(x′

1)
logZ(x′

1)
}

exp
{
β(ε)V ∗

}

=

(

Z(x′
1)

exp
{
β(x′

1)[V
∗ −R(x′

1)]
}

) β(ε)

β(x′
1
)

=: z
β(ε)

β(x′
1
) .

This result has a convenient operational interpretation. Define
the temperature ratio as ξ := β(ε)/β(x′

1). Since the inverse
temperatures have the same sign, ξ > 0, and if we assume
that z ≤ 1, then accepting the sample x′

1 is equivalent to
generating ξ consecutive Bernoulli successes with bias z (we
will see further down how to generate these). In turn, since
z is equal to

Z(x′
1)

exp
{

β(x′
1)[V

∗ −R(x′
1)]

}

=

∑

x′
2
Q(x′

2|x
′
1) exp

{

β(x′
1)R(x′

2|x
′
1) +

β(x′
1)

β(x′
≤2

)
logZ(x′

≤2)
}

exp
{

β(x′
1)[V

∗ −R(x′
1)]

} ,

generating a Bernoulli success is equivalent to first generat-

ing x′
2 ∼ Q(x2|x

′
1) and then accepting with probability a′,

where

a′ =

(

Z(x′
≤2)

exp
{
β(x′

≤2)[V
∗ −R(x′

1)−R(x′
2|x

′
1)]
}

) β(x′
1)

β(x′
≤2

)

is the probability of the tail rooted at x′
1x

′
2. It is easily

seen how to recursively extend this process for generating

x′
3, x

′
4, . . . until reaching a leave x′

T . Essentially, when a

parent node has a different temperature from its child node,

then the previous procedure “equalizes” them by demanding

either more (ξ > 1) or less (ξ < 1) accepted samples from

the child node in order to accept the sample from the parent

node.

a) Generating a non-integer amount of consecutive

Bernoulli successes: To make this algorithm practical, we

need to determine an efficient way to generate an arbitrary,

possibly non-integer amount ξ of consecutive Bernoulli suc-

cesses. This can be done by first generating ⌊ξ⌋ Bernoulli

trials in the obvious way, and then generating the remaining

(ξ − ⌊ξ⌋) using the following theorem.

Theorem 6. Let x be a Bernoulli random variate with bias

(1− fN) where

fN =

N∑

n=1

bn, and

bn = (−1)n+1 ξ(ξ − 1)(ξ − 2) · · · (ξ − n+ 1)

n!

for 0 < ξ < 1 and where N is a Geometric random variate

with probability of success p. Then, x is a Bernoulli random

variate with bias pξ.

b) Summary of the algorithm: We now state the recur-

sive rejection sampling algorithm. To obtain a sample from

Z(x<t) with target value V (x<t)
∗:

1) Obtain a sample x′ ∼ Q(xt|x<t).
2) Base case: If x<tx

′ is a terminal node, then accept

with probability

exp
{

β(x<T)
(
R(xT |x<T) + V (x≤T)− V ∗(x≤t)

)}

,

otherwise reject.

3) Recursion: if x<tx
′ is not a terminal node, then attempt

to generate ξ = β(x<t)/β(x<tx
′) accepted sam-

ples from Z(x<tx
′) with target value V ∗(x<tx

′) :=
V ∗(x<t)−R(x′|x<t). If all of them are accepted, then

return any of the generated paths; otherwise reject.

This is initialized by setting V ∗(ε) equal to our initial

target value V ∗, and then generating a sample from Z(ε). If

the sample gets accepted, then we choose any of the gener-

ated trajectories x′
≤t as our accepted sample. Analogously to

the one-step decision case, the Metropolis sampler uses the

recursive rejection sampler as the acceptance step.

IV. EXPERIMENTAL RESULTS

We have conducted three experiments. The first one ver-

ifies that the proposed Monte Carlo methods generate the

correct distribution. The second experiment investigates the

relation between the difficulty of generating a sample, the

number of outcomes, and the inverse temperature. Finally,

we apply the Metropolis sampler to a navigation planning

example. It must be stressed that, in the literature, there exists

no planning algorithm that can calculate the optimal policy

of a generalized decision tree.

A. Experimental Validation of Monte Carlo Methods

We compared the equilibrium distribution obtained

by Monte Carlo simulation with the true equilibrium

distribution—see Figure 2, panels a, b & c. For this, we first

created a decision tree of depth 3 with branching factor 10,

totalling an amount of 1000 leaves. The tree’s transition

probabilities, rewards and inverse temperatures were chosen

randomly. Panels a and b compare the true equilibrium

distribution (solid blue) against the simulated equilibrium

distribution using both rejection sampling (dash-dotted red)

and Metropolis (dashed green) in a regular plot and a

semi-log plot respectively. Panel c shows the corresponding

relative deviation curves (d(x) := log p(x)
p̂(x)) for the two

simulations. The outcomes have been sorted in ascending

order to ease the interpretation.

We found that these simulations were very accurate, con-

firming the validity of our algorithms. In the case rejection

sampling, we have found that choosing a target value that is

too high increases the number of rejected proposals. In the

Metropolis-Hastings sampler, we have found that the Markov

chain has to be run roughly three times longer than rejection

sampling in order to obtain a sample from the equilibrium

distribution with high probability.

0 200 400 600 800 1000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 200 400 600 800 1000
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

0 200 400 600 800 1000

−1

−0.5

0

0.5

1

b)

c) d)

0 2 4 6 8 10
0

5

10

15

20

25

a)
true

RS

MH

true

RS

MH

RS / true

MH / true

100

1000

O
u

tc
o
m

e
s

Fig. 2. Panels a,b & c: Comparison of the true versus simulated
equilibrium distribution. Panel d: Average number of rejected proposals
before acceptance as a function of the inverse temperature.

B. Number of Proposals

We investigated the relationship between the average num-

ber of rejected proposals, the number of outcomes, and the

inverse temperature. In order to do so, we have created a

total of ten one-step decision trees of increasing number

of outcomes. The transition probabilities and rewards were

drawn uniformly. Then, for each decision tree, we then simu-

lated the equilibrium distribution as a function of the inverse

temperature α, and then calculated the average number of

rejections before acceptance. The resulting curves are shown

in Figure 2, Panel d. Ten curves are shown, corresponding to

one-step decision trees with 100, 200, . . . , 1000 outcomes.

These curves show a remarkable fact: as the number of

outcomes increases, the proposal curves converge to a limit

curve. Hence, the number of proposals essentially depend

on the inverse temperature α, and not on the number of

outcomes. This suggests that the inverse temperature controls

the effective number of alternatives in the decision problem.

Instead, dynamic programming must visit all the leaves of

the tree in the worst case.

C. Navigation Planning with Limited Control

We have applied the Metropolis-Hastings sampler in a toy

planning problem. A vehicle has to be remotely controlled

using an antenna with limited range through a landscape

with quadratic cost. The strength of the signal of the antenna

limits the ability to control the vehicle, which would follow

a dynamics x(t) governed by a velocity vector v(t) evolving

as a random walk when uncontrolled:

x(t) = x(t− 1) + v(t) · dt, v(t) = v(t− 1) + ν · dt,

(i.e. integration using the Euler method with time discretiza-

tion dt) where ν is normally distributed with mean zero

and a diagonal covariance matrix. Notice that the corre-

sponding decision tree has an uncountably infinite branching

factor. The signal strength was modeled with a location-

dependent inverse temperature. We sampled 30 trajectories

from the equilibrium distribution using Metropolis-Hastings

(1000 iterations) for 3 starting locations having the same

distance from the goal but different initial signal strength.

The trajectories are shown in Figure 3, panels a–c. In the

map, the black contours model the inverse temperature/signal

strength, and the red contours the local reward (the minimum

is at [0, 1]). Panels d–f show the mean evolution and error

bars (one standard deviation) of the trajectories’ reward

curves during the Monte Carlo simulation. It is seen that a

strong signal (first column) leads to better controlled future

projections, whereas a low signal (right column) significantly

hampers the ability to control the vehicle.

−2 −1 0 1 2
−2

−1

0

1

2

0 200 400 600 800 1000
−4

−3

−2

−1

0

−2 −1 0 1 2
−2

−1

0

1

2

0 200 400 600 800 1000
−4

−3

−2

−1

0

−2 −1 0 1 2
−2

−1

0

1

2

0 200 400 600 800 1000
−4

−3

−2

−1

0

a) b) c)

d) e) f)

T
ra

je
ct
o
ri
e
s

R
e
w
a
rd

x1

x2

x1

x2

x1

x2

R R R

n nn

Fig. 3. Navigation planning with limited control under three initial
conditions. Panels a–c show the projected trajectories, where the red and
black contours encode the reward and inverse temperature landscapes
respectively. Panels d–f contain the mean evolution of the Monte Carlo
simulation generating the trajectories.

V. DISCUSSION AND CONCLUSIONS

A. Very large and negative temperature ratios

The proposed sampling methods work well when the

temperature ratios between two subsequent states are strictly

positive at all times, which is the case when all the inverse

temperatures in the tree have the same sign. However,

when the temperature change tends to infinity ξ → ∞,

then the number of required samples from the child node

grows unboundedly. This can only happen when the inverse

temperature of a child node tends to zero. However in this

case, any of the child node’s samples get accepted, and so

one can interpret this process as essentially estimating the

typical realization of the uncontrolled process.

In the case when the temperature ratio is negative (ξ < 0),

then our interpretation in terms of Bernoulli trials breaks

down—since it would correspond to generating a negative

amount of consecutive Bernoulli successes. This restriction

implies that we cannot solve generalized decision trees

mixing cooperative and adversarial transitions.

B. Number of Proposals

Our second experiment has suggested that the inverse

temperature controls the effective number of alternatives

considered by the agent. The following theorem tells us

how many proposal samples from Q are needed in order

to generate a sample from the equilibrium distribution in a

one-step decision.

Theorem 7. Let δ > 0 be a constant. The number of

proposals nα needed to achieve a probability 1 − δ of

acceptance is given by

nα =
log δ

log(1− pα)

where

pα =
Zα

exp{αV ∗}
=

∑

xQ(x) exp{αU(x)}

exp{αV ∗}
,

as long as V ∗ ≥ maxx{U(x)} whenever α ≥ 0 or V ∗ ≤
minx{U(x)} whenever α ≤ 0.

Importantly, if we interpret X as a discretization of a con-

tinuous domain Ω endowed with a prior probability density

q(ω) and bounded utility density u(ω), then the partition

function Zα corresponds to a discrete approximation to the

partition function over Ω. It is easily seen that in this case,

the number nα of samples does not depend on the number

of outcomes |X |.

C. Conclusions

The presented sampling schemes for generalized decision

trees operationalize the free energy for bounded rational

control. This has two implications. First, we can solve a

novel class of control problems under information constraints

due to resource constraints, risk-sensitivity, trust and model

uncertainty. Second, we have shown how the trade off be-

tween value and information encapsulated in the free energy

functional can be exploited algorithmically. In particular, to

find the optimal solution to a generalized decision tree, we

do not need to visit all its branches. Rather, the amount

of branches to be explored is directly controlled by the

inverse temperatures of the internal nodes. This is in stark

contrast to dynamic programming, which needs to visit all

the branches to obtain an exact solution. More generally

though, we believe that our work casts some light onto the

problem of bounded-rational control [18]. In particular, our

results suggest an intricate relationship between the degree

of control of an agent, its value thresholds, and the effective

number of alternatives it is contrasting during planning.

Acknowledgments: The authors thank Cardinal for his

contribution of Theorem 6.

REFERENCES

[1] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
3rd ed. Prentice-Hall, Englewood Cliffs, NJ, 2010.

[2] M. Osborne and A. Rubinstein, A Course in Game Theory. MIT
Press, 1999.

[3] G. S. Hamzei and D. Mulvaney, “Self-organising fuzzy decision trees
for robot navigation: An online learning approach,” in Systems, Man,

and Cybernetics, 1998. 1998 IEEE International Conference on, vol. 3,
1998, pp. 2332–2337 vol.3.

[4] S. Koo, J.-G. Lim, and D.-S. Kwon, “Online touch behavior recog-
nition of hard-cover robot using temporal decision tree classifier,” in
Robot and Human Interactive Communication, 2008. RO-MAN 2008.
The 17th IEEE International Symposium on, 2008, pp. 425–429.

[5] D. Wilking and T. Röfer, “Realtime Object Recognition Using De-
cision Tree Learning,” in RoboCup 2004: Robot Soccer World Cup

VIII, ser. Lecture Notes in Computer Science, D. Nardi, M. Riedmiller,
C. Sammut, and J. Santos-Victor, Eds. Springer Berlin Heidelberg,
2005, vol. 3276, pp. 556–563.

[6] H. He, T. McGinnity, S. Coleman, and B. Gardiner, “Linguistic
Decision Making for Robot Route Planning,” IEEE Transactions on

Neural Networks and Learning Systems, vol. 25, no. 1, pp. 203–215,
2013.

[7] D. Michie, “Game-playing and game-learning automata,” Advances in
Programming & Non-Numerical Computation, pp. 183–200, 1966.

[8] R. Bellman, “Dynamic Programming,” Princeton, NJ, 1957.
[9] P. Ortega and D. Braun, “Free Energy and the Generalized Optimality

Equations for Sequential Decision Making,” in European Workshop

on Reinforcement Learning (EWRL10), 2012.
[10] P. A. Ortega and D. A. Braun, “Thermodynamics as a Theory of

Decision-Making with Information Processing Costs,” Proceedings of
the Royal Society A 20120683, 2013.

[11] H. Kappen, “A linear theory for control of non-linear stochastic
systems,” Physical Review Letters, vol. 95, p. 200201, 2005.

[12] H. Kappen, V. Gómez, and M. Opper, “Optimal control as a graphical
model inference problem,” Machine Learning, vol. 1, pp. 1–11, 2012.

[13] E. Todorov, “Linearly solvable Markov decision problems,” in Ad-

vances in Neural Information Processing Systems, vol. 19, 2006, pp.
1369–1376.

[14] ——, “Efficient computation of optimal actions,” Proceedings of the

National Academy of Sciences U.S.A., vol. 106, pp. 11 478–11 483,
2009.

[15] P. Ortega and D. Braun, “Information, utility and bounded rationality,”
in Lecture notes on artificial intelligence, vol. 6830, 2011, pp. 269–
274.

[16] N. Tishby and D. Polani, Perception-Action Cycle. Springer New
York, 2011, ch. Information Theory of Decisions and Actions, pp.
601–636.

[17] P. Ortega, “A unified framework for resource-bounded autonomous
agents interacting with unknown environments,” Ph.D. dissertation,
Department of Engineering, University of Cambridge, UK, 2011.

[18] H. Simon, Models of Bounded Rationality. Cambridge, MA: MIT
Press, 1984.

