Bayesian Control Rule

Pedro A. Ortega

Max Planck Institute for Intelligent Systems
Max Planck Institute for Biological Cybernetics

Overview

- Introduction
- Adaptation
- Causality
- Bayesian control rule
- Conclusions

Agent-Environment Setup

Agent-Environment Setup

Environment can be a bandit, MDP, POMDP or any other controllable stochastic process.

Adaptive Control

In theory:

Choose policy maximizing subjective expected utility.

In practice: intractable!

- Policy space grows exponentially with planning horizon.
- Policy choice causally precedes interactions.

Choose policy before interacting?

What if choosing the optimal policy was tractable?

This implies:

- precomputing all the possible lives,
- and then picking the optimal policy.

However:

- Prediction has no accuracy, because it is **not supported** by any data.
- The optimal policy is statistically meaningless in the beginning!

Can we choose policies dynamically?

- Delay choice of optimal policy – when justified by data.
- Agent is uncertain about the optimal policy.
- Practical adaptive control and RL do this explicitly/implicitly.
- Implementation of "intuition"

Questions

How do we choose the optimal policy dynamically?

How is uncertainty over the policy represented?

How are actions issued when the policy is uncertain?

How is this uncertainty reduced?

The Cost of Experience

Agent records observations.

The Cost of Experience

- Agent records observations.
- Acquiring experience implies changes in the belief structure.

The Cost of Experience

- Agent records observations.
- Acquiring experience implies changes in the belief structure.
- Can we minimize these changes?

Adaptive Compression

 When the environment is known, maximal compression is achieved when codeword lengths are chosen as

$$l(o_{\leq t}) := -\log Q(o_{\leq t})$$

Conversely, every code implies predictions

$$P(o_{\leq t}) = 2^{-l(o_{\leq t})}$$

 The belief structure of the agent embodies the assumptions about the environment.

Adaptive Compression (cont.)

- How to compress when the environment is unknown?
- Consider set of possible environments Θ , with probabilities $P(\theta)$ and models $P(o_{\le t}|\theta)$.
- Choose a predictor $ilde{P}$ minimizing expected codeword length: $ilde{ ilde{Environment}} heta$

Choice of
$$\theta$$

$$L_t[\tilde{P}] = \sum_{\theta} P(\theta) \left\{ \sum_{o \leq t} P(o \leq t | \theta) \log \frac{P(o \leq t | \theta)}{\tilde{P}(o \leq t)} \right\}$$
Predictor

Adaptive Compression (cont.)

Solution: Bayesian mixture

$$\tilde{P}(o_{\leq t}) := \sum_{\theta} P(o_{\leq t}|\theta)P(\theta) = P(o_{\leq t})$$

Predictive distribution

$$P(o_t|o_{< t}) = \sum_{\theta} P(o_t|o_{< t})P(\theta|o_{< t})$$

 Bottom line: adaptive compression is solved by pretending that the Bayesian mixture is the true environment

Example: Prediction of Biased Coin

$$P(\theta) = \frac{1}{2}$$

Example: Prediction of Biased Coin II

mixture over all biases in [0,1]

Summary

The Bayesian mixture is the optimal compressor of experience for an unknown environment.

Extension to Actions

Can we use this for adaptive behavior?

• Instead of competing hypotheses, we would have competing behaviors $(\theta, \pi) \in \Theta \times \Pi$:

$$P(a_{< t}, o_{< t} | \theta, \pi)$$
 $P(\theta, \pi)$

Would lead to

$$P(\text{next action}|\text{experience}) = P(a_t|a_{< t}, o_{< t})$$

The Cost of Experience II

Agent records actions & observations.

The Cost of Experience II

- Agent records actions & observations.
- Again, actions change the belief structure.

The Cost of Experience II

- Agent records actions & observations.
- Again, actions change the belief structure.
- However, they do not change the beliefs.

Posterior beliefs

$$P(\theta, \pi | a_t, o_t, ...)$$

 $\propto \text{likelihood} \times \text{prior}$
 $= P(o_t | \theta, a_t, ...) P(a_t | \pi, ...) \times P(\theta, \pi | ...)$

Posterior beliefs

$$P(\theta, \pi | a_t, o_t, ...)$$

 $\propto \text{likelihood} \times \text{prior}$
 $= P(o_t | \theta, a_t, ...) P(a_t | \pi, ...) \times P(\theta, \pi | ...)$

...but our actions produce evidence, we conclude the optimal policy from our own actions.

Posterior beliefs

$$P(\theta, \pi | a_t, o_t, ...)$$

 $\propto \text{likelihood} \times \text{prior}$
 $= P(o_t | \theta, a_t, ...) P(a_t | \pi, ...) \times P(\theta, \pi | ...)$

...but our actions produce evidence, we conclude the optimal policy from our own actions.

Posterior beliefs

$$P(\theta, \pi | a_t, o_t, ...)$$

 $\propto \text{likelihood} \times \text{prior}$
 $= P(o_t | \theta, a_t, ...) P(a_t | \pi, ...) \times P(\theta, \pi | ...)$

...but our actions produce evidence, we conclude the optimal policy from our own actions.

 We cannot change events that causally precede the present.

Causality

Solution: treat actions as causal interventions

$$P(\theta, \pi | \hat{a}_t, o_t, \dots)$$

$$\propto \text{likelihood} \times \text{prior}$$

$$= P(o_t | \theta, \hat{a}_t, \dots) P(\hat{a}_t | \pi, \dots) \times P(\theta, \pi | \dots)$$

$$= P(o_t | \theta, a_t, \dots) \times P(\theta, \pi | \dots)$$

Causality

Solution: treat actions as causal interventions

$$P(\theta, \pi | \hat{a}_t, o_t, ...)$$

$$\propto \text{likelihood} \times \text{prior}$$

$$= P(o_t | \theta, \hat{a}_t, ...) P(\hat{a}_t | \pi, ...) \times P(\theta, \pi | ...)$$

$$= P(o_t | \theta, a_t, ...) \times P(\theta, \pi | ...)$$

 Causal intervention informs us that we have to ignore the evidence produced by the action.

Causality

Solution: treat actions as causal interventions

$$P(\theta, \pi | \hat{a}_t, o_t, ...)$$

$$\propto \text{likelihood} \times \text{prior}$$

$$= P(o_t | \theta, \hat{a}_t, ...) P(\hat{a}_t | \pi, ...) \times P(\theta, \pi | ...)$$

$$= P(o_t | \theta, a_t, ...) \times P(\theta, \pi | ...)$$

- Causal intervention informs us that we have to ignore the evidence produced by the action.
- Caveat:

$$\pi = \pi(\theta)$$

Bayesian versus Causal Update

Summary

Actions are produced by the agent itself and thus need to be treated as causal interventions.

Bayesian Control Rule

Bayesian Control Rule

Given a set Θ of

behaviors

$$P(a_{\leq t}, o_{\leq t} | \theta)$$

prior probabilities

$$P(\theta)$$

sample actions from $P(a_t | \hat{a}_{< t}, o_{< t})$

$$P(a_t | \hat{a}_{< t}, o_{< t})$$

Bayesian Control Rule (cont.)

Time t

θ

Prior:

$$P(\theta|\hat{a}_{< t}, o_{< t})$$

Acting:

$$\theta^* \sim P(\theta|\hat{a}_{< t}, o_{< t})$$

$$a_t^* \sim P(a_t|\theta^*, \hat{a}_{< t}, o_{< t})$$

Observing:

$$P(\theta|\hat{a}_{\leq t}, o_{\leq t})$$

$$\propto P(\theta|\hat{a}_{\leq t}, o_{\leq t}) P(o_t|\theta, a_{\leq t}, o_{< t})$$

Time t+1

Posterior:

$$P(\theta|\hat{a}_{\leq t}, o_{\leq t})$$

Example: 2-Armed Bandit

- Bernoulli-distributed rewards, unknown biases.
- Hypotheses: $\Theta = [0,1] \times [0,1]$
- Prior: $P(\theta) = U(0,1) \times U(0,1)$
- Observations: $P(o|\theta, a) = B(o; \theta_a)$
- Actions: $P(a|\theta) = \delta_a^{\arg\max_i \theta_i}$

Example: 2-Armed Bandit

- Bernoulli-distributed rewards, unknown biases.
- Hypotheses: $\Theta = [0,1] \times [0,1]$
- Prior: $P(\theta) = U(0,1) \times U(0,1)$
- Observations: $P(o|\theta, a) = B(o; \theta_a)$
- Actions: $P(a|\theta) = \delta_a^{\arg\max_i \theta_i}$

 Recently proven to be asymptotically optimal [Kaufmann, Korda, Munos 2012].

Results for 10-Armed Bandit

Markov Decision Processes

Conclusions

Properties

- Stochastic controller that refines its policy with experience.
- Ingredients: Bayes + Causality.
- Transforms control into inference.
- Related to Random Beliefs & Thompson sampling.
- Allows tackling game-theoretic problems.
- Exploits built-in reward mechanism of Bayes' rule.
- Works also with complex causal models.

Pros and Cons

Pros

- Simple and general.
- Converges to desired behavior in "ergodic" tasks.
- Suitable for on-line.
- Trades-off exploration versus exploitation.
- Automatic temporal credit assignment.

Cons

- Sub-optimal in the transient.
- Does not converge in non-ergodic environments.
- Convergence speed highly depends on environment.
- Design of behaviors can be difficult.

