Bayesian Control Rule

Pedro A. Ortega

Max Planck Institute for Intelligent Systems Max Planck Institute for Biological Cybernetics

- Introduction
- Adaptation
- Causality
- Bayesian control rule
- Conclusions

Introduction

Agent-Environment Setup

Agent-Environment Setup

Environment can be a bandit, MDP, POMDP or any other **controllable stochastic process**.

Adaptive Control

In theory:

● Choose policy maximizing **subjective expected utility**.

In practice: intractable!

- Policy space **grows exponentially** with planning horizon.
- Policy choice **causally precedes** interactions.

Choose policy **before** interacting?

What if choosing the optimal policy was tractable?

This implies:

- precomputing **all the possible lives**,
- and then picking the **optimal policy**.

However:

- Prediction has no accuracy, because it is **not supported** by any data.
- The optimal policy is **statistically meaningless in the beginning**!

Can we choose policies **dynamically**?

- **Delay** choice of optimal policy – when **justified** by data.
- Agent is **uncertain** about the optimal policy.
- **Practical** adaptive control and RL **do this** explicitly/implicitly.
- Implementation of "**intuition**"

How do we choose the optimal policy **dynamically**?

How is uncertainty over the policy **represented**?

How are **actions issued** when the policy is uncertain?

How is this uncertainty **reduced**?

Adaptation

The Cost of Experience

The Cost of Experience

- Agent records observations.
- Acquiring experience implies **changes** in the belief structure.

The Cost of Experience

- Agent records observations.
- Acquiring experience implies **changes** in the belief structure.
- **Can we minimize these changes?**

Adaptive Compression

• When the environment is **known**, maximal compression is achieved when codeword lengths are chosen as

$$
l(o_{\leq t}) := -\log Q(o_{\leq t})
$$

● Conversely, every code **implies predictions**

$$
P(o_{\leq t}) = 2^{-l(o_{\leq t})}
$$

● The belief structure of the agent **embodies the assumptions** about the environment.

Adaptive Compression (cont.)

- How to compress when the environment is **unknown**?
- Consider set of possible environments Θ , with probabilities $P(\theta)$ and models $P(o_{\leq t}|\theta)$.
- Choose a predictor \tilde{P} minimizing expected codeword length:Environment θ

Choice of
$$
\theta
$$

\n
$$
L_t[\tilde{P}] = \sum_{\theta} P(\theta) \left\{ \sum_{o \le t} P(o_{\le t} | \theta) \log \frac{P(o_{\le t} | \theta)}{\tilde{P}(o_{\le t})} \right\}
$$
\nPredictor

Adaptive Compression (cont.)

● Solution: **Bayesian mixture**

$$
\tilde{P}(o_{\leq t}) := \sum_{\theta} P(o_{\leq t} | \theta) P(\theta) = P(o_{\leq t})
$$

• Predictive distribution

$$
P(o_t|o_{< t}) = \sum_{\theta} P(o_t|o_{< t}) P(\theta|o_{< t})
$$

• Bottom line: adaptive compression is solved by **pretending** that the Bayesian mixture is the true environment

Example: Prediction of Biased Coin

Example: Prediction of Biased Coin II

Pedro A. Ortega **Adaptive Coding of Actions and Observations** 18/50

The Bayesian mixture is the optimal compressor of experience for an unknown environment.

Pedro A. Ortega **Adaptive Coding of Actions and Observations** 19/50

Extension to Actions

- Can we use this for **adaptive behavior**?
- Instead of **competing hypotheses**, we would have **competing behaviors** $(\theta, \pi) \in \Theta \times \Pi$:

$$
P(a_{\leq t}, o_{\leq t} | \theta, \pi) \qquad P(\theta, \pi)
$$

• Would lead to

 $P(\text{next action}|\text{experience}) = P(a_t|a_{<},o_{<})$

The Cost of Experience II

• Agent records actions & observations.

The Cost of Experience II

- Agent records actions & observations.
- Again, actions **change** the belief structure.

The Cost of Experience II

- Agent records actions & observations.
- Again, actions **change** the belief structure.
- However, they **do not change the beliefs**.

• Posterior beliefs

$$
P(\theta, \pi | a_t, o_t, ...)
$$

$$
\propto \text{likelihood} \times \text{prior}
$$

$$
= P(o_t | \theta, a_t, ...) P(a_t | \pi, ...) \times P(\theta, \pi | ...)
$$

• Posterior beliefs

 $P(\theta, \pi | a_t, o_t, \ldots)$ \propto likelihood \times prior $= P(o_t | \theta, a_t, \ldots) P(a_t | \pi, \ldots) \times P(\theta, \pi | \ldots)$

...but **our actions produce evidence**, we conclude the optimal policy from our own actions.

• Posterior beliefs

 $P(\theta, \pi | a_t, o_t, \ldots)$ \propto likelihood \times prior $= P(o_t | \theta, a_t, \ldots) P(a_t | \pi, \ldots) \times P(\theta, \pi | \ldots)$

...but **our actions produce evidence**, we conclude the optimal policy from our own actions.

• Posterior beliefs

 $P(\theta, \pi | a_t, o_t, \ldots)$ \propto likelihood \times prior $= P(o_t | \theta, a_t, \ldots) P(a_t | \pi, \ldots) \times P(\theta, \pi | \ldots)$

...but **our actions produce evidence**, we conclude the optimal policy from our own actions.

● **We cannot change events that causally precede the present.**

- Solution: treat actions as **causal interventions**
	- $P(\theta, \pi | \hat{a}_t, o_t, \ldots)$ \propto likelihood \times prior = $P(o_t | \theta, \hat{a}_t, \ldots) P(\hat{a}_t | \pi, \ldots) \times P(\theta, \pi | \ldots)$ $= P(o_t | \theta, a_t, \ldots) \times P(\theta, \pi | \ldots)$

- Solution: treat actions as **causal interventions**
	- $P(\theta, \pi | \hat{a}_t, o_t, \ldots)$ \propto likelihood \times prior $= P(o_t | \theta, \hat{a}_t, \ldots) P(\hat{a}_t | \pi, \ldots) \times P(\theta, \pi | \ldots)$ $= P(o_t | \theta, a_t, \ldots) \times P(\theta, \pi | \ldots)$
- Causal intervention informs us that we have to **ignore the evidence** produced by the action.

- Solution: treat actions as **causal interventions**
	- $P(\theta, \pi | \hat{a}_t, o_t, \ldots)$ \propto likelihood \times prior $= P(o_t | \theta, \hat{a}_t, \ldots) P(\hat{a}_t | \pi, \ldots) \times P(\theta, \pi | \ldots)$ $= P(o_t | \theta, a_t, \ldots) \times P(\theta, \pi | \ldots)$
- Causal intervention informs us that we have to **ignore the evidence** produced by the action.
- $\pi = \pi(\theta)$ • Caveat:

Bayesian versus Causal Update

Actions are produced by the agent itself and thus need to be treated as causal interventions.

Pedro A. Ortega **Adaptive Coding of Actions and Observations Adaptive Coding of Actions** and Observations **Actions** 33/50

Bayesian Control Rule

Bayesian Control Rule

Given a set Θ of

• behaviors $P(a_{\leq t}, o_{\leq t}|\theta)$

• prior probabilities $P(\theta)$

sample actions from $P(a_t|\hat{a}_{< t}, o_{< t})$

Bayesian Control Rule (cont.)

Pedro A. Ortega **Adaptive Coding of Actions and Observations** 36/50

Example: 2-Armed Bandit

- Bernoulli-distributed rewards, unknown biases.
- Hypotheses: $\Theta = [0,1] \times [0,1]$
- $P(\theta) = U(0,1) \times U(0,1)$ • Prior:
- Observations: $P(o|\theta, a) = B(o; \theta_a)$
- $P(a|\theta) = \delta_a^{\arg \max_i \theta_i}$ • Actions:

Example: 2-Armed Bandit

- Bernoulli-distributed rewards, unknown biases.
- Hypotheses: $\Theta = [0,1] \times [0,1]$
- $P(\theta) = U(0,1) \times U(0,1)$ • Prior:
- Observations: $P(o|\theta, a) = B(o; \theta_a)$
- $P(a|\theta) = \delta_a^{\arg \max_i \theta_i}$ • Actions:

● Recently proven to be **asymptotically optimal** [Kaufmann, Korda, Munos 2012].

Results for 10-Armed Bandit

Pedro A. Ortega **Adaptive Coding of Actions and Observations Adaptive Coding of Actions** and Observations **39/50**

Markov Decision Processes

Conclusions

Properties

- Stochastic controller that **refines its policy with experience.**
- Ingredients: **Bayes + Causality**.
- Transforms control into inference.
- Related to **Random Beliefs** & **Thompson sampling.**
- Allows tackling **game-theoretic** problems.
- Exploits **built-in reward mechanism** of Bayes' rule.
- Works also with **complex causal models**.

Pros and Cons

Pros

- Simple and general.
- Converges to desired behavior in "ergodic" tasks.
- Suitable for on-line.
- Trades-off exploration versus exploitation.
- Automatic temporal credit assignment.

Cons

- Sub-optimal in the transient.
- Does not converge in non-ergodic environments.
- Convergence speed highly depends on environment.
- Design of behaviors can be difficult.

